Outline

— Language Hierarchy

— Definition of Turing Machine
— TM Variants and Equivalence
— Decidability

— Reducibility

Outline

— Definition of Turing Machine

Language Hierarchy

-recognizable ™,

A ™, /
iy conrext-free / s
V7 |

regular

*Regular: finite memory
*CFG/PDA: infinite memory but in stack space
*TM: infinite and unrestricted memory

—TM Decidable/Recursive

—TM Recognizable/Recursively Enumerable

Semantics of TM

* Not a real machine, but a model of computation

» Components:
— l-way infinite tape: unlimited memory
« Store input, output, and intermediate results
« Infinite cells
« Each cell has a symbol from a finite alphabet
— Tape head:
« Point to one cell
« Read or write a symbol to that cell
« move left or right

abab.___};.. f

Alon Turing (1912-1954)

States of a TM

* Initial state:
— Head on leftmost cell
— input on the tape
— Blank everywhere else
» Accept state

* Loop

Reject state

Accept or reject immediately

Formal Definition

A Turing machine is a 7-tuple (. . 1.4, q0. qaccept- dreject), Where
€, £, and I are all finite sets and

1. @@ is the set of states,

2. I is the input alphabet, where the blank symbol |, & £,
3. I is the tape alphabet, where €T and Z C T,
4

LA =T « (@ w I x {L. R} is the transition function,

(L]

. g €) is the start state,
6. faccept € 2 is the accept state, and
T.

dreject € Q i5 the reject state,

Example of transition function:

8(q.a) = (p.b. L)
8(g.a) = (p,b, R)

B = {w#w|w € {0,1}*}, and B = L(M;)

An Example

* The tape changing:

(=T 5

1

+
1

-

pres)

1000#011000u ...
1000#0110000u ...
1000#x11000u ...
1000#x11000u ...
1000#x11000u ...

XXX XH#AXAXXXXXU ...

Configuration

* A configuration of TM:
— Current state
— Symbols on tape
— Head of location
A formal specification of a configuration:
— uqu, where
_ww are strings on I, and we is the current content on taps
q is current state
T head is in the first symbol of o

~ ex1011g, 01111
e} -

Configuration

* For two configurations:
waqg;bv and wg;ace, where
a,bee ', and w0 e I'
waq;bv yields uq;acv if 6(q;.b) = (q;.¢. L)
uaqibv yields wacqjv if 8(q;.b) = (gj. ¢, R)

» Two special cases:
— the leftmost cell
* g;bv yields giev for ‘%(qnb) =(g;.e.L)
« gbvyields éq,v for 9(4:0)=(q;.c.R)
— on the cell with blank symbol

— wag; s equivalent to wag;l)

Languages

 Turing-recognizable Languages:
— Fora LcT, exists a M such that M recognizes L
— “Recognize” means accept, reject, or loop
* Turing-decidable languages:
— Fora rcr, exists a M such that M decides L
— “Decide” means halting: either accept or reject
* Turing-decidable C Turing-recognizable
— Halting Problem is Turing-recognizable, but not decidable.
* Not all languages are Turing-recognizable

— There are some languages cannot be recognized by a TM.
« Complement of Halting problem is Turing-unrecognizable

Configuration

« Initial configuration with input w: g,w
* Accepting configuration: #q,.,"
* Rejecting configuration: uq,,,.v
* UG uecqpv and ug,,, v do not yield any other configurations
— Immediate effect of accepting/rejecting

— Halting configurations
* ForaTM M, a string w e L(M) if there is a sequence of

configurations C;,C,,...C; such that:

- Cr=qw

— C,yields C;, for 1 <i<k

= Ce= U e, w0 € 17

An example
A = L(Ms). where A = {0*" [n = 0}

+ Semantical description:
For an input string w:
{ sweep left to the right along the tape, crossing off every other 0
if tape contains single 0
{ return accepted;}
elseif tape contains odd number and more than one of 0s
{ return (rejected);}
else go back to leftmost cell;

i =)
o I Y
» Formal description: Py Y J\ s

My = {€. 5. T8, 1 facest: Greject }. Where ;‘" [y {:{ P
o 0 = {1 G2 43, Q0. @5 Gaceepts Greect § “/"L | umr

u=10 ~ A
*E=10 @ e
o I'={0.r 1} b

-

» 4 state transition diagram — ——

Outline

— TM Variants and Equivalence

Simple variant

¢« 5:QxI'—QxTIx{L RS}
e 5:QxT —QxT x{L R RR,LL}

* They are equivalent in recognizing
language:
— They can be simulated by original the TM
— The difference is not significant

TM Variants

Multitape TM

Nondeterministic TM
Enumerators

Equivalence:All have same power

— Recognize the same class of languages
— Can be simulated by an ordinary TM

Multitape TM

+ A multitape TM is identical to ordinary TM
except:
— ktapes, where k>1
— Each tap has its own head
—8:QxTF = QxTI'* x{L R SI*
— Olg;,ay,as.. .., ag) = (g;. by bo.. ... L K. ...,

— | GOIH[eRL. -
Mf_];- a a J -

i S
blajul...

Multitape TM

* Theorem: each multitape TM has an equivalent single tape
™

— Put # in a single tape for demarcation of original k tapes.

— Each movement of M is simulated by a series movement of S on each
segment.

— For a right-move on the rightmost cell of ith tape in M, S write blank
symbol in (i+1)th #, and right-shifts all symbols after that one cell.

— | [® iTo 1]0]u]
MR &g
JEEES

S| L] S . _
’.7'_ [#TolIo[sJolelalalaTalB]ale]ul..

* A computation si
a tree:

Deterministic
computation

= Start

e e e e d—

* avcept or reject

NTM

ngle path and multi-path in

Nondeterministic
computation

L

fyy
O
reject i 1

—-—

* accept

Nondeterministic TM

* A nondeterministic TM is identical to an ordinary
TM except:
- §:QxT —=PQx=xT'x{L R})
— At any point the head has several possibilities to
read/write/move.
* In deterministic TM, a computation is a single
path with sequence of configurations.
* In nondeterministic TM, a computation is a tree or
a directed acyclic graph.
— A NTM accepts an input string if there exists a path
leading to an accept state.
— If all paths lead to reject state, then this input is
rejected.

Nodeterminism

* Is nondetermini

stic model always

equivalent to a deterministic model?

— Yes, for FA
— No, for PDA

« Some CFL cannot be recognized by any DPDA.

— Yes, for TM!

NTM

e Theorem: Every NTM has an equivalent
DTM.

| l(ro0t)

ofo[1[o]u]... nputtape
i[x # | 1] 1fx|u]_. .. simalation tape

1]2[a[3[2[a[1]2]1[1]3]c]... addressupe

21 12 123

» For a computing tree of a NTM N with an input w,
simulated with a 3-tape DTM M:
— lst tape: input w
— 2nd tape: tape of a computing path with N
— 3rd tape: node address (finite)

Enumerator

o Theorem: 4 language is Turing-recognizable iff
some enumerator enumerates it.
— For a language, if £ enumerates it, then construct a TM M works
as:
« Run E. Every time that £ outputs a string, compare it with input w.
« If w appears in the output of E, accept.
— For a language recognized by a TM M, construct £ such that:
« Run M for i steps on each input, s1, s2, ..., si.
« If any computations accept, print out the corresponding s;.
« Repeat the above two steps with all possible inputs
* An enumerator can be regarded as a 2-tape TM.
— Write accepted list on the 2™ tape.

Enumerator

+ Semantically, an enumerator is a TM with an attached
printer.

» Every time the TM wants to add a string to its output list, it
sends the string to the printer.

» The language enumerated by an enumerator £ is the
collection of all the strings that £ eventually prints out.

S o ST

"_—"|—prir|wr ~

work tape

Other Variants

* Write-twice TM
— Each cell on tape can only be written twice

* Write-once TM
— Each cell on tape can only be written once
* TM with doubly infinite tape
— Two-way infinite tape
* Universal TM
— A TM that takes input of description of another TM.

Thesis _
Outline
» Church-Turing Thesis:

— Any algorithm can be expressed as a TM
— Formally defines an algorithm:

Tuuring machine |
algorithms I

Intwitive sotion

of algorithns equals

— Decidability
» Extended Church-Turing Thesis:

— Any polynomial-time algorithm can be expressed as a
TM that operates in polynomial time.

— A polynomial-time algorithm: number of element operations is a
polynomial function of input length.

— A polynomial-time TM: number of state transition is a polynomial
function of input length.

D ibing TM
escribing Solvability

» Formal description

— specifying Turing machine’s states, transition function, ¢« Solvable:
and so on. . .
. . — an algorithm to solve it,
* Implementation description o
— using natural language to describe the way that the —aTM decides it.
Turing machine moves its head and the way that it « Unsolvable:
stores data on its tape.)))
— not algorithm to solve it

» High-level description
— using natural language describe an algorithm, ignoring
the implementation model.

—no TM can decide it.

Decidable Language

Appa = {(B,w) | B is a DFA that accepts w}

* Acceptance problem:
— Whether a particular DFA B accepts a given input string w.

* Membership problem:
— Another way to say: whether <B,w> is a member of 4,,.
* Theorem: A, is a decidable language.
M = "On input (B,w}, where B is a DFA and w is a string:
1. Simulate B on input w.

2. If the simulation ends in an accept state, accept; otherwise,
raject.”

Decidable Language
Arpex = {(R,w) | R is a regular expression that generates w}

* Theorem: Appy is a decidable language.

P = "On input (R, w), where R is a regular expression and w is
a string:

1. Convert regular expression R to an equivalent DFA A.
2. Run TM M for deciding Apga on input (A, w).

3. If M accepts, accept; otherwise, reject.”

Decidable Language

Angea = {(B,w) | B is an NFA that accepts w}.

e Theorem: A NEALS @ decidable language.

N = "On input (B,w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA C.

2. Run TM M for deciding Apga (as a “procedure”) on input

(Cw).

3. If M accepts, accept; otherwise, reject.”

Decidable Language
Eppa = {(A) | A is a DFA and L(A) = 0}

» Emptiness test problem:
— Whether the language of a particular DFA is empty.

» Theorem: E, is a decidable language.
T = "On input (A}, where A is a DFA:
1. Mark the start state of A.
2. Repeat Step 3 until no new states get marked.

3. Mark any state that has a transition coming into it from any
state that is already marked.

4., If no accept state is marked, accept; otherwise, reject.”

Decidable Language

EQpra ={ (A, B)| A and B are DFAs and L(A) = L(B) }

» Equivalence problem:
— Test whether two DFAs recognize the same language.

* Theorem: EQpp, is a decidable language.

F = "On input {A. B}, where A and B are DFAs:
1. Construct DFA ' = (AN BYU (AN B)

2. Run TM T for deciding Egpa on input (7).

| r-l.-_/ J?.<\I—\ LB}

3. If T accepts, accept; otherwise, reject.”

@ |

U

Halting Problem
Aty = {(M,w) | M is a TM and M accepts w}

Theorem: Apy, is Turing-recognizable.

"On input (M, w), where M is a TM and w is a string:

1. Simulate M on input w.
2. If M ever enters its accept state, accept, if M ever enters its

reject state, reject.”

U is an example of universal TM.
U keeps looping if M neither accepts or rejects.

Other Problems

* Acpg is decidable.
* Epgis decidable.
* EQcpg is undecidable.

— CFG is not closed in intersection and complementation.

* Ay, is undecidable.
— Halting problem

* Ep,is undecidable.

* EQy, is undecidable.

Halting Problem

* Theorem: 4y, is undecidable.

— Can be proved by recursive theorem.
Suppose H is a decider for Aqy:
accept if M accepts w

H{{M, w)) = .
(A1, w)) [reject i M does not accept w

D= "On input (M), where M is a TM:

1. Run H on input {M,{M}}
2. If H accepts, reject and if H rejects, accept.”

. accept if M does not accept (M)
DMy = ¢ P PN
reject if M accepts (M)

sy | oaccept i [does not accept (D)
b((D)) = { reject if D accepts (D)

Unrecognizable

e Theorem: There are languages that cannot
recognized by any TM.
— The set of TMs are countable

* @, L, and " are all finite sets
« Number of transition functions is countable.

— The set of languages is uncountable.
o wel™*
- LCT*
« L eP(I'*), P(I') is uncountable

— Diagonalization method to prove this

Countable

* Set of position rational numbers is
countable: {m/n,m.n e N}

Countable and Uncountable

* Two infinite sets 4 and B are the same size if
there is a correspondence from A to B.
— A correspondence is a one-to-one and onto function:
fiA—=B
— one-to-one: f(a) = f(4) whenever @ 7= I
— Onto: Whe B.3ae A fla)=h

* A setis countable if either it is finite or it has the
same size as N={1,2,3...}; otherwise it is
uncountable.

Uncountable
 Set of real numbers R is uncountable:

Assume that a correspondence f existed between N and R.

| fln)
3.14159---
55.55555 -+
0.12345--.
0.50000---

o S

‘We can find an =z, 0 < = < 1, so that the i-th digit following the
decimal point of r is different from that of f(i); for example,
x = 0.4641--- is a possible choice.

Uncountable

» The set of all languages over an alphabet is
uncountable.
— Think that a real number is a string over
alphabet of {. , 0,1,2,3,4,5,6,7,8,9}

— Similar diagonalization way to prove with
general alphabet

Arp={(M,w) | M is a TM and M does not accept w}

e Theorem: Ay, isnot Turing-recognizable

—1If Atm is Turing-recognizable, and 4, is
Turing-recognizable, then 4, must be
decidable.—contradiction!

Theorem: 4 language is decidable iff both
it and its complement language are
Turing-recognizable.

If 4 is decided by M, then :
M,="“on input w:
1. Run M, onw.

2. If M, rejects, accept; if M, accepts, reject.
— M, decides 4

If A and 4 are Turing-recognizable:
Let My be a recognizer for A and M be a recognizer for A.

M = "On input w;

1. Run both Afy and Mg on input w in parallel. (M takes turns
simulating one step of each machine until one of them halts.}

2. If M, accepts, accept and if My accepts, refect.”

Outline

— Reducibility

Reducibility

Semantics

Reduce Ay, to HALT,
PCP Problem

Mapping Reducibility

